首页 移动设备 查看内容

目前计算机还不够聪明 我们该如何交AI思考?

2016-9-28 16:01| 发布者: tianzc| 查看: 41| 评论: 0

摘要: 网易科技讯9月28日消息,数据是新的石油吗?在2012年的时候,《福布斯》杂志在一篇文章中引述了这句一位大数据支持者的提问。时间转瞬飞逝到了2016年,大数据潮流涌去,又掀起了名为深度学习(deep learning)的巨浪 ...

 

undefined

网易科技讯9月28日消息,“数据是新的石油吗?”在2012年的时候,《福布斯》杂志在一篇文章中引述了这句一位大数据支持者的提问。时间转瞬飞逝到了2016年,大数据潮流涌去,又掀起了名为“深度学习”(deep learning)的巨浪,我们从《福布斯》那儿再次听到了更为明确的答案:“数据是新的石油!”

对这一观点,目前就职于亚马逊的机器学习和计算生物学教授尼尔?劳伦斯(Neil Lawrence)在这一比喻的喻体对象上,有着些许不同的看法,他认为:数据是新的煤炭。

劳伦斯教授日前在伦敦举办的Re-Work大会的深度学习研讨会上,向我们分享了这个故事:在18世纪的时候,英国工程师托马斯·纽科门(Thomas Newcomen)发明了最初的蒸汽机(这是瓦特所发明的常压蒸汽机的前身)。纽科门最初的设想是将蒸汽机用于英国西南部锡富矿的开采上。在那时,纽科门所遇到的情况是,要让纽科门蒸汽机实现抽水的功能,就必须让它要靠近煤炭产地,因为这台蒸汽机的效率虽然很高,但它所创造的价值还是不足以支撑买煤炭来让它作业的花费。

或许正是基于这样的原因,第一台纽科门蒸汽机是在英国达德利市的煤矿边儿上运转起来的,而不在锡矿。

所以,为什么劳伦斯教授会说数据就是煤炭?因为它俩的情况很相似:目前,在全世界的深度学习领域里都有出现了许多“纽科门”。像Magic Pony和SwiftKey这样位于伦敦的初创公司提出了很多革命性的新方法,这些方法能训练计算机去实现一些能令人目瞪口呆的认知能力,比如从一堆模糊的照片中重新构建出人物的面部数据,通过学习用户的笔迹来更好地预测他接下来要写什么东西。

undefined

就目前来说,就像纽科门那样,这些公司的创新出的AI技术的需求量非常的大,它们有充足的“燃料”来一展身手。也正是基于目前AI技术火爆的局面,各家AI初创公司都已成了科技巨头们争相抢夺的香饽饽。

目前,Magic Pony已被Twitter收购了,而SwiftKey也已被微软所收购。就连劳伦斯教授自己,也已在三周前,被亚马逊公司以高薪从谢菲尔德大学(University of Sheffield)挖走了。

然而,劳伦斯教授教授的故事其实还没有讲完:69年后,詹姆斯·瓦特(James Watt)改良了纽科门蒸汽机,在原先的设计中加入了一个冷凝器。而这一小小的改变,按照劳伦斯教授的说法:“让蒸汽机的效率更上了一层楼,并由此引发了工业革命。”

无论你认为数据是石油还是煤炭,我们对于它其实还有另外一种理解:许多AI科学家所做出的努力,就是确保我们能事半功倍。

单纯地教一台计算机在围棋或是玩游戏上打败人类,其实还不是什么大不了的事情,但如果深度学习技术正从原先的“胡吃海喝”数据,转变至具备能反馈出最佳匹配可能的能力的话,那么深度学习技术在“数据利用率”上,就将获得质的飞跃。

“如果你能仔细回想一下那些深度学习技术已大放异彩的领域,那么你很容易就能发现这些领域的共同点,那就是这些领域都能产生出大量的数据,”劳伦斯教授这样说道。

深度学习技术能帮你轻松辨认出猫的照片,但如果你想让它帮你诊断什么疑难杂症的话,目前还是比较难能实现的。

“从科学伦理学的角度上去看,我们不可能强迫志愿者去生病,来帮助我们搜集改良深度学习算法所需要的数据。”

计算机还是很傻的

对于像谷歌旗下的AI研究组织Deep Mind这样的AI成功实践者来说,他们现在所面临的问题是:我们目前的计算机的真正学习水平,仍处于相当痴呆的状态。

对于人类,我可以给你看一张你从未见过的动物照片——比如一只短尾矮袋鼠——在这张照片的认知教导下,你足以在一堆照片中正确地辨认出一只完全不同的短尾矮袋鼠。但如果我们首次将一张短尾矮袋鼠的照片,发给一个已被预先训练过的优秀神经网络系统,它能调一调自己的认知模型,都已经算是谢天谢地的了。

当然,反过来说,如果你给一个深度学习系统展示数百万张短尾矮袋鼠的照片,然后再输入数百万张其它哺乳动物的照片,你或许就能得到一个无敌的哺乳动物辨认系统,仅凭一点细枝末节的东西,它就能打败所有的顶级人类选手。

“一个好的深度学习系统需要海量数据的支持,来帮助它构建自己的分析模型,” 英国伦敦帝国理工学院认知机器人学教授默里·沙纳汉(Murray Shanahan)这样说道。

“这实际上是一个非常非常缓慢的学习过程,但即便是一个非常年幼的人类儿童,他都能迅速地学会新的知识。”

专注于深度学习领域的专家们,目前都已经提出了许多能提高“数据利用率”问题的方法,他们中的大多数人都觉得,能模仿人类大脑的运作方式的人工智能系统是最强的。

其中一个方法提到了一项名为“progressive neural networks”(渐进式神经网络)的新技术,它的目标是攻克许多深度学习模型在进入到一个全新领域时,都会遇到的难题:究竟是应该忽略掉它们此前已掌握的信息来重头开始呢?还是应该冒着“遗忘”所学知识的风险,用新信息来改写自己的认知模型。

为了更好地帮助读者理解这一点,我们可以一起尝试想象这样的场景:当你要学习辨认短尾矮袋鼠的时候,你是打算独立地从头、身体、四肢、皮毛等等来重新学习它的整个特征呢?还是试图结合你已有的认知,冒着可能会忘记“猫长什么样”的风险来学习它呢?

undefined

谷歌Deep Mind工程师Raia Hadsell主要负责将更好的系统嵌入到团队的深度学习模型当中,这对于公司想要搭建一个“通用型人工智能系统”的这一长期目标,是非常至关重要的。通用型人工智能系统指的是能像你我那样做各种各样复杂的事情的AI系统。

“它是没有模型的,也没有所谓的神经网络,在通用型人工智能的世界里,它既可以被训练成辨认物品的大师,又能玩电子游戏,还懂得听音乐,”Hadsell在Re-work大会上这样说道。

“我们希望它能做到的是学习一个任务,然后在这个工作上达到专家级的水平,然后转而投向第二个任务,紧接着做第三、第四、第五个任务。”

“我们希望这个通用型AI系统在学习新东西的时候,不会抛弃已有的认知,并具备从一个任务跳转到另一个任务的能力:如果我掌握了处理一项任务的技能,我希望它能帮助我来学习下一个任务。”而这也正是Hadsell在Deep Mind带领团队成员正在探索的事儿。

他们的方法能让深度学习系统“冻结”对一个任务的理解——比如打乒乓球——然后转到处理下一个任务上,而它在处理第二个任务的时候,能回过头去,再参考它在处理第一个任务时所学习到的那些知识。

您可能也感兴趣:
    索尼PS VR开卖在即 可玩的游戏大作盘点
    《反贪风暴2》票房破2亿 稳坐中秋档第二把交椅
aliyun
标签:不够计算机AI( 责任编辑:宛健)

鲜花

握手

雷人

路过

鸡蛋
爱评测 aipingce.com  
返回顶部